겐첸 시스템을 MathJax로! bussproofs
bussproofs 패키지를 통해 다음과 같은 증명들을 (MathJax를 비롯한) \(\TeX\) 환경에서 표현할 수 있다.
$$
\begin{prooftree}
\AxiomC{$P$}
\AxiomC{$\neg P$}
\BinaryInfC{$Q$}
\end{prooftree}
\tag{EFQ}
$$
코드:
$$
\begin{prooftree}
\AxiomC{$P$}
\AxiomC{$\neg P$}
\BinaryInfC{$Q$}
\end{prooftree}
\tag{EFQ}
$$
$$
\begin{prooftree}
\def\fCenter{\mbox{ $\vdash$ }}
\Axiom$A, B, C\fCenter D$
\UnaryInf$A, B\fCenter C \supset D$
\end{prooftree}
\tag{RD}
$$
코드:
$$
\begin{prooftree}
\def\fCenter{\mbox{ $\vdash$ }}
\Axiom$A, B, C\fCenter D$
\UnaryInf$A, B\fCenter C \supset D$
\end{prooftree}
\tag{RD}
$$
$$
\begin{prooftree}
\AxiomC{$P$}
\AxiomC{}
\RightLabel{$\scriptsize{\text{AxPr}_1}$}
\UnaryInfC{$P \supset (Q\supset P)$}
\RightLabel{MP}
\BinaryInfC{$(Q\supset P)$}
\end{prooftree}
$$
코드:
$$
\begin{prooftree}
\AxiomC{$P$}
\AxiomC{}
\RightLabel{$\scriptsize{\text{AxPr}_1}$}
\UnaryInfC{$P \supset (Q\supset P)$}
\RightLabel{MP}
\BinaryInfC{$(Q\supset P)$}
\end{prooftree}$$